104 research outputs found

    The Plio-Quaternary uplift of the Apennine Chain: new data from the analysis of topography and river valleys in Central Italy

    Get PDF
    This study aimed at the reconstruction of magnitude and timing of uplift of a wide sector of the Central Apennines (Italy) by means of morphometric and morphostructural analyses. In the internal portion of the chain (where stratigraphic and geomorphological markers of past sea-level positions are lacking) the study was based on analysis of erosional landforms and river valleys. A large-scale topographic analysis was performed, processing 90-m and 230-m DEMs. The spatial distribution of several morphometric parameters, together with characteristic wavelengths of relief, allowed the distinction of three main regions affected by different cumulative surface uplift and tectonic/erosional fragmentation: a Peri-Tyrrhenian Belt; an Axial Belt; a Peri-Adriatic Belt. Particular attention was devoted to fluvial landforms, with analysis of longitudinal profiles and geometric pattern of the main stream-trunks and their relations with major structures. Major differences occur between the Tyrrhenian and Adriatic valley systems, the former being generally longitudinal and showing overall concave-upward longitudinal profiles, whereas the latter are generally transverse and possess less regular longitudinal profiles. Topographic features and river valleys architecture seem related to different styles and amounts of uplift in the three Belts. Within the study area, a narrower coast to coast transect (Gaeta-Vasto Transect, GVT) was investigated in detail, devoting particular attention to its axial sector, lying around the Apennines main divide (main divide area: MDA), and a possible scheme of the Quaternary surface uplift inside this transect was proposed. In the MDA, the main stages of landscape evolution and river network organization were reconstructed by analysis of paleosurfaces coupled with analysis of relic and present-day hydrographic network. This allowed recognition of a major phase of surface uplift (exceeding 1500 m in the Meta-Mainarde massif) occurred in response to thrusting during the Pliocene, whereas for the Quaternary uplift a minimum value around 400 m was estimated. Our study suggests that, during the Quaternary and in the GVT, the Peri-Tyrrhenian Belt suffered a subdued uplift operating over small wavelengths (10-15 km), while Axial and Peri- Adriatic Belts were subject to a stronger and long-wavelength (90 km) surface uplift, with maximum values (about 700 m) shifted NE of the Axial Belt and tapering to zero towards the Adriatic coast. The reconstructed pattern of uplift is coherent with the topographic properties of the three Belts and with the observed drainage features

    Geomorphological map of the Tremiti Islands (Puglia, Southern Adriatic Sea, Italy), scale 1:15,000

    Get PDF
    This paper describes the Geomorphological map of the Tremiti Islands (Puglia, Southern Adriatic Sea, Italy), scale 1:15,000. The Tremiti Islands, located north of Gargano promontory's coast, are part of a complex geological area within the Adriatic basin, facing the junction between the central and southern Apennines. This area is well known for Neogenic-Quaternary stratigraphic, tectonic and seismologic aspects and is crucial for the definition of Late Quaternary Adriatic basin evolution. The map is the result of a geomorphological study carried out on the islands and the inner continental shelf around them. This study incorporates: (1) field recognition of Quaternary continental deposits and geomorphological mapping, supported by radiometric dating, focused on the morpho-lithostratigraphic correlation of deposits among the different islands and the recognition of landforms that controlled landscape evolution; (2) bathymetric analysis; (3) geomorphological analysis of data from a side scan sonar survey, ..

    A Multi-Disciplinary Approach to the Study of Large Rock Avalanches Combining Remote Sensing, GIS and Field Surveys: The Case of the Scanno Landslide, Italy

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record.This research aims to highlight the importance of adopting a multi-disciplinary approach to understanding the factors controlling large rock avalanches using the Scanno landslide, Italy, as a case study. The study area is the Mount Genzana, Abruzzi Central Apennines, characterized by the regional Difesa-Mount Genzana-Vallone delle Masserie fault zone. The Scanno landslide is famous for its role in the formation of the Scanno Lake. The landslide is characterized by a wide exposed scar, which was interpreted in previous studies as the intersection of high-angle joints and an outcropping bedding plane on which the landslide failed sometime between the Upper Pleistocene and the Holocene. In this study, the Scanno landslide was investigated through the integration of geological, geomechanical and geomorphological surveys. Remote sensing techniques were used to enrich the conventionally gathered datasets, while Geographic Information Systems (GIS) were used to integrate, manage and investigate the data. The results of the authors investigation show that the outcropping landslide scar can be interpreted as a low-angle fault, associated with the Difesa-Mount Genzana-Vallone delle Masserie fault zone, which di ers from previous investigations and interpretations of the area. The low-angle fault provides the basal failure surface of the landslide, with two systematic high-angle joint sets acting as lateral release and back scarp surfaces, respectively. In light of these new findings, pre- and post-failure models of the area have been created. The models were generated in GIS by combining LiDAR (Light Detection and Ranging) and geophysics data acquired on the landslide body and through bathymetric survey data of the Scanno Lake. Using the pre- and post-failure models it was possible to estimate the approximate volume of the landslide. Finally, back-analyses using static and dynamic limit equilibrium methods is also used to show the possible influence of medium-to-high magnitude seismic events in triggering the Scanno landslide

    Castel di Sangro-Scontrone field camp – structural and applied geomorphology

    Get PDF
    The Geomorphological Field Camp 2014 in the Castel di Sangro-Scontrone area is the result of geological and geomorphological teaching field work activities carried out in Central Italy by a group of 23 students attending the Structural Geomorphology and Applied Geomorphology courses (Master's Degree in Geological Science and Technology of the Università degli Studi ‘G. d'Annunzio’ Chieti-Pescara, Italy, Department of Engineering and Geology). The Field Camp 2014 was organized in May 2014, following regular classes held during the fall term. General activities for the field camp were developed over four main stages: (1) preliminary analysis of the regional geological and geomorphological setting of the area; (2) preliminary activities for the analysis of the local area (orography, hydrography and photogeology investigations, and geographical information system processing); (3) field work, focused on the analysis of a specific issue concerning structural geomorphology or applied geomorphology (e.g. landscape evolution, river channel change, landslide distribution, and flood hazard); and (4) post-field work production of the map. Finally, the fundamental role of field work in the analysis of landscape and in land management was outlined: indeed, the overall field camp enhanced the crucial role of field-based learning for young geomorphologists in order to acquire a strong sensitivity to geomorphological processes and landscape evolution

    PAX8 promotes tumor cell growth by transcriptionally regulating E2F1 and stabilizing RB protein

    Get PDF
    The retinoblastoma protein (RB)–E2F1 pathway has a central role in regulating the cell cycle. Several PAX proteins (tissue-specific developmental regulators), including PAX8, interact with the RB protein, and thus regulate the cell cycle directly or indirectly. Here, we report that PAX8 expression is frequent in renal cell carcinoma, bladder, ovarian and thyroid cancer cell lines, and that silencing of PAX8 in cancer cell lines leads to a striking reduction in the expression of E2F1 and its target genes, as well as a proteasome-dependent destabilization of RB protein, with the RB1 mRNA level remaining unaffected. Cancer cells expressing PAX8 undergo a G1/S arrest and eventually senesce following PAX8 silencing. We demonstrate that PAX8 transcriptionally regulates the E2F1 promoter directly, and E2F1 transcription is enhanced after RB depletion. RB is recruited to the PAX8-binding site, and is involved in PAX8-mediated E2F1 transcription in cancer cells. Therefore, our results suggest that, in cancer, frequent and persistent expression of PAX8 is required for cell growth control through transcriptional activation of E2F1 expression and upregulation of the RB–E2F1 pathway
    corecore